Suppression of FOXM1 Transcriptional Activities via a Single-Stranded DNA Aptamer Generated by SELEX

نویسندگان

  • Qin Xiang
  • Guixiang Tan
  • Xia Jiang
  • Kuangpei Wu
  • Weihong Tan
  • Yongjun Tan
چکیده

The transcription factor FOXM1 binds to its consensus sequence at promoters through its DNA binding domain (DBD) and activates proliferation-associated genes. The aberrant overexpression of FOXM1 correlates with tumorigenesis and progression of many cancers. Inhibiting FOXM1 transcriptional activities is proposed as a potential therapeutic strategy for cancer treatment. In this study, we obtained a FOXM1-specific single stranded DNA aptamer (FOXM1 Apt) by SELEX with a recombinant FOXM1 DBD protein as the target of selection. The binding of FOXM1 Apt to FOXM1 proteins were confirmed with electrophoretic mobility shift assays (EMSAs) and fluorescence polarization (FP) assays. Phosphorthioate-modified FOXM1 Apt (M-FOXM1 Apt) bound to FOXM1 as wild type FOXM1 Apt, and co-localized with FOXM1 in nucleus. M-FOXM1-Apt abolished the binding of FOXM1 on its consensus binding sites and suppressed FOXM1 transcriptional activities. Compared with the RNA interference of FOXM1 in cancer cells, M-FOXM1 Apt repressed cell proliferation and the expression of FOXM1 target genes without changing FOXM1 levels. Our results suggest that the obtained FOXM1 Apt could be used as a probe for FOXM1 detection and an inhibitor of FOXM1 transcriptional functions in cancer cells at the same time, providing a potential reagent for cancer diagnosis and treatment in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Challenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library

Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...

متن کامل

Challenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library

Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...

متن کامل

CELL-SELEX: Novel Perspectives of Aptamer-Based Therapeutics

Aptamers, single stranded DNA or RNA molecules, generated by a method called SELEX (systematic evolution of ligands by exponential enrichment) have been widely used in various biomedical applications. The newly developed Cell-SELEX (cell based-SELEX) targeting whole living cells has raised great expectations for cancer biology, -therapy and regenerative medicine. Combining nanobiotechnology wit...

متن کامل

آپتامرها و کاربردهای بیولوژیکی-درمانی آنها

Aptamers are the artificial single-stranded DNA or RNA sequences (more recently, peptides) that fold into secondary and tertiary structures making them bind to certain targets with extremely high specificity. Aptamers were reported for the first time in 1990, a number of their unique features make them a more effective choice than antibodies. Aptamers typically generated through Systematic Ev...

متن کامل

Development of a Single Stranded DNA Aptamer as a Molecular Probe for LNCap Cells Using Cell-SELEX

BACKGROUND Nowadays, highly specific aptamers generated by cell SELEX technology (systematic evolution of ligands by exponential enrichment) are being applied for early detection of cancer cells. Prostate Specific Membrane Antigen (PSMA), over expressed in prostate cancer, is a highly specific marker and therefore can be used for diagnosis of the prostate cancer cells. The aim of the present st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017